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Abstract Automated structural magnetic resonance

imaging (MRI) processing pipelines are gaining popularity

for Alzheimer’s disease (AD) research. They generate

regional volumes, cortical thickness measures and other

measures, which can be used as input for multivariate

analysis. It is not clear which combination of measures and

normalization approach are most useful for AD classifica-

tion and to predict mild cognitive impairment (MCI) con-

version. The current study includes MRI scans from 699

subjects [AD, MCI and controls (CTL)] from the Alzhei-

mer’s disease Neuroimaging Initiative (ADNI). The Free-

surfer pipeline was used to generate regional volume,

cortical thickness, gray matter volume, surface area, mean

curvature, gaussian curvature, folding index and curvature

index measures. 259 variables were used for orthogonal

partial least square to latent structures (OPLS) multivariate

analysis. Normalisation approaches were explored and the

optimal combination of measures determined. Results

indicate that cortical thickness measures should not be

normalized, while volumes should probably be normalized

by intracranial volume (ICV). Combining regional cortical

thickness measures (not normalized) with cortical and

subcortical volumes (normalized with ICV) using OPLS

gave a prediction accuracy of 91.5 % when distinguishing

AD versus CTL. This model prospectively predicted future

decline from MCI to AD with 75.9 % of converters cor-

rectly classified. Normalization strategy did not have a

significant effect on the accuracies of multivariate models

containing multiple MRI measures for this large dataset.

The appropriate choice of input for multivariate analysis in

AD and MCI is of great importance. The results support the

use of un-normalised cortical thickness measures and vol-

umes normalised by ICV.

Keywords Freesurfer � MRI � OPLS � AD � MCI

conversion � Sensitivity � Specificity

Introduction

Alzheimer’s disease (AD) is the most common form of

dementia in the ageing population of today. The estimated

cost of dementia worldwide has been calculated as 315.4

billion USD based on an estimated 29.3 million demented

patients in 2005 (Wimo et al. 2007). The number of

patients with AD has been predicted to quadruple by 2050

(Brookmeyer et al. 2007). The disease is characterized by a

gradual loss of cognitive functions, such as episodic

memory. The two major pathological hallmarks of AD are

extracellular plaques and intracellular tangles. Plaques and
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tangles are built of aggregates of Ab (Glenner and Wong

1984; Masters et al. 1985) and hyperphosphorylated tau

(Goedert et al. 1991), respectively. Other characteristics of

AD are synaptic loss and neuronal cell death, leading to

brain atrophy. Magnetic resonance imaging (MRI) pro-

vides structural information about the brain and has for

many years been widely used for early detection and

diagnosis of AD (O’Brien 2007; Ries et al. 2008). The way

in which AD atrophy progresses through the brain has been

described by Braak and Braak (1991). Atrophy typically

starts in the medial temporal and limbic areas, subse-

quently spreading to parietal association areas and finally

to frontal and primary cortices. For many years studies

have focused on single structures in the medial temporal

lobe for the early diagnosis of AD, such as hippocampus

and entorhinal cortex (Fox et al. 1996; Jack et al. 1992,

1997; Juottonen et al. 1999). In recent years however,

research has focused on combining different regions to

look at patterns of atrophy instead of single measures and

the former approach has proven to be more sensitive

(McEvoy et al. 2011; Westman et al. 2011c; Zhang et al.

2011). MRI is today an integrated part of the suggested

research (Dubois et al. 2007) and diagnostic criterion

(McKhann et al. 2011) alongside cerebrospinal fluid (CSF)

markers and positron emission tomography (PET).

Freesurfer is a highly automated structural MRI image

processing pipeline which produces regional volume, cor-

tical thickness, gray matter volume, surface area, mean

curvature, gaussian curvature, folding index and curvature

index measures. Automated image analysis pipelines may

have particular advantages when it comes to widespread

uptake in either clinical or research practice. Manual

measures of different brain regions are time consuming and

operator dependent and therefore not always practical in a

clinical settings. However, automated tools must be pre-

cise, accurate, fast and must be validated and tested on

large cohorts. Several groups have utilized automated

pipelines in AD research (Cui et al. 2011; Li et al. 2011;

McEvoy et al. 2009, 2011). We have also previously used

automated image analysis pipeline output analyzed with

multivariate tools for the purpose of AD classification and

to predict conversion from the prodromal stage of the

disease, mild cognitive impairment (Westman et al., 2011a,

b). Different regional MRI measures have been used in the

studies reported in the literature including our own and

different approaches have been taken to normalization. For

example, should regional volumes be normalized by

dividing by intracranial volume to reflect differences in

head size between individuals, particularly males and

females, and pre-morbid brain size? It is not clear yet

which combination of regional measures and which nor-

malization approaches yield the best results for individual

classification and prediction.

The current study investigated the use of regional MRI

measures analyzed by orthogonal partial least square to

latent structure (OPLS) a multivariate tool for classification

of individual subjects. The specific aims were to determine:

(1) which type of normalization approach is most useful for

the different regional measures (2) which combination of

regional measures results in the best classification accuracy

when distinguishing between AD subjects and healthy

controls, and (3) to prospectively predict conversion from

MCI to AD at baseline by appropriate choice of multi-

variate model. We hypothesized that regional volumetric

measures would give the best results when normalized by

total intracranial volume, that surface area should be nor-

malized by whole brain surface area, while the remaining

measures (cortical thickness, mean curvature, gaussian

curvature, folding index and curvature index) should not be

normalized. Further, we hypothesized that a combination

of regional subcortical volumes normalized by intracranial

volume and un-normalized cortical thickness measures

would generate the most accurate predictions.

Materials and Methods

Data

Data was downloaded from the Alzheimer’s disease

Neuroimaging Initiative (ADNI) database (www.loni.ucla.

edu/ADNI, PI Michael M. Weiner). ADNI was launched in

2003 by the National Institute on Aging (NIA), the

National Institute of Biomedical Imaging and Bioengi-

neering (NIBIB), the Food and Drug Administration

(FDA), private pharmaceutical companies and non-profit

organizations, as a $60 million, 5-year public–private

partnership. The primary goal of ADNI has been to test

whether serial MRI, PET and other biological markers are

useful in clinical trials of MCI and early AD. Determina-

tion of sensitive and specific markers of very early AD

progression is intended to aid researchers and clinicians to

develop new treatments and monitor their effectiveness, as

well as lessen the time and cost of clinical trials. ADNI

subjects aged 55–90 from over 50 sites across the U.S. and

Canada participated in the research and more detailed

information is available at www.adni-info.org.

Inclusion and Diagnostic Criteria

A total of 699 subjects were included in the current study

(AD = 187, MCI = 287 and CTL = 225). The demo-

graphics of the cohort are given in Table 1. We included all

subjects who had successful MRI measures at baseline

which passed the quality control steps outlined below. Out

of the 287 MCI subjects, 87 had converted at the 18-month
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follow-up (MCIc) to Alzheimer’s disease. Subjects which

did not convert to Alzheimer’s disease at 18 month follow

up are referred to as MCI stable (MCIs) here.

A detailed description of the inclusion criteria can be

found on the ADNI webpage (http://www.adni-info.org/

Scientists/AboutADNI.aspx#). Subjects were between 55

and 90 years of age. They had a study partner able to

provide an independent evaluation of functioning, and

spoke either English or Spanish. All subjects were willing

and able to undergo all test procedures including neuro-

imaging and agreed to longitudinal follow up. Specific

psychoactive medications were excluded.

Alzheimer’s disease (General inclusion/exclusion cri-

teria): (1) Mini mental state examination (MMSE) scores

between 20 and 26, (2) Clinical dementia rating scale

(CDR) of 0.5 or 1.0, 3) met NINCDS/ADRDA criteria for

probable AD, (3) Geriatric Depression Scale \6, (4) Sub-

jects excluded if they had any other significant neurologic

disease other than Alzheimer’s disease.

Mild cognitive impairment (General inclusion/exclusion

criteria): (1) subjects had MMSE scores between 24 and 30

(inclusive), (2) memory complaint, with objective memory

loss measured by education adjusted scores on the Wechsler

Memory Scale Logical Memory II, (3) CDR of 0.5, (4)

absence of significant levels of impairment in other cognitive

domains, essentially preserved activities of daily living, and

an absence of dementia, (5) Geriatric Depression Scale\6,

(6) Subjects excluded if they had any other significant neu-

rologic disease other than Alzheimer’s disease.

Controls (General inclusion/exclusion criteria): (1)

MMSE scores between 24 and 30 inclusive, (2) CDR of

zero, (3) they were non-depressed, non MCI, and non-

demented.

MRI

MRI data was downloaded from the ADNI website (www.loni.

ucla.edu/ADNI). A description of the data acquisition for the

ADNI study can be found at www.loni.ucla.edu/ADNI/

research/Cores/index.shtml. Briefly, 1.5T MRI data was col-

lected from a variety of MR-systems with protocols optimized

for each type of scanner. The MRI protocol included a high

resolution sagittal 3D T1-weighted MPRAGE volume (voxel

size 1.1 9 1.1 9 1.2 mm3) acquired using a custom pulse

sequence specifically designed for the ADNI study to ensure

compatibility across scanners. Full brain and skull coverage

was required for the MRI datasets and detailed quality control

carried out on all MR images from both studies according to

previously published quality control criteria (Simmons et al.

2009, 2011).

Regional Volume Segmentation and Cortical Thickness

Parcellation

We utilized the Freesurfer pipeline version 5.1.0 (http://

surfer.nmr.mgh.harvard.edu/), which includes removal of

non-brain tissue using a hybrid watershed/surface defor-

mation procedure (Segonne et al. 2004), automated Talai-

rach transformation, segmentation of the subcortical white

matter and deep grey matter volumetric structures (Fischl

et al. 2002; Fischl et al. 2004a; Segonne et al. 2004)

intensity normalization (Sled et al. 1998), tessellation of

the grey matter white matter boundary, automated topology

correction (Fischl et al. 2001; Segonne et al. 2007), and

surface deformation following intensity gradients to opti-

mally place the grey/white and grey/cerebrospinal fluid

borders at the location where the greatest shift in intensity

defines the transition to the other tissue class (Dale et al.

1999; Dale and Sereno 1993; Fischl and Dale 2000). Once

the cortical models are complete, registration to a spherical

atlas takes place which utilizes individual cortical folding

patterns to match cortical geometry across subjects (Fischl

et al. 1999). This is followed by parcellation of the cerebral

cortex into units based on gyral and sulcal structure

(Desikan et al. 2006; Fischl et al. 2004b). The pipeline

generated 68 cortical thickness, cortical volume, surface

Table 1 Subject characteristics

AD (n = 187) MCI (n = 287) CTL (n = 225) MCIs (n = 200) MCIc (n = 87) p

Female/male 88/99 104/183 108/117 66/134 38/49 –

Age 75.4 ± 7.5 74.9 ± 7.0 75.9 ± 5.1 74.7 ± 7.1 75.2 ± 6.9 –

Education 14.7 ± 3.1 15.8 ± 3.0 16.1 ± 2.9 15.9 ± 3.0 15.4 ± 3.0 –

MMSE 23.3 ± 2.0a,b 27.1 ± 1.7b 29.1 ± 1.0 27.4 ± 1.7 26.5 ± 1.7 \0.001

CDR 0.7 ± 0.3a,b 0.5b 0 0.5 0.5 \0.001

Data are represented as mean ± standard deviation

Two-way Student t test with Bonferroni correction was used for age and education and neuropsychological tests comparisons. a Significant

compared to MCI group. b Significant compared to control group

AD Alzheimer’s disease, MCI mild cognitive impairment, CTL healthy control, Education in years, MMSE mini mental state examination,

ADAS1 Word list non-learning (mean), CDR clinical dementia rating. Chi-square was used for gender comparison
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area, mean curvature, gaussian curvature, folding index and

curvature index measures (34 from each hemisphere) and 46

regional subcortical volumes. Volumes of white matter hy-

pointensities, optic chiasm, right and left vessel, and left and

right choroid plexus were excluded from further analysis.

Cortical thickness and volumetric measures from the right

and left side were averaged (Fjell et al. 2009; Walhovd et al.

2011). In total 259 variables obtained from the pipeline were

used as input variables for the OPLS classification, 34 cor-

tical regions (7 types of measures) and 21 regional volumes

(Table 2). Figure 1 illustrates the location of both the cor-

tical and subcortical regions. This segmentation approach

has been used for multivariate classification of Alzheimer’s

disease and healthy controls (Westman et al. 2011d), neu-

ropsychological-image analysis (Liu et al. 2010c, 2011),

imaging-genetic analysis (Liu et al. 2010a, b) and biomarker

discovery (Thambisetty et al. 2010).

Normalization

We wished to compare the effect of different normalisation

approaches on multivariate analysis to determine which

gave the best discriminant and predictive performance. To

this end we normalised the various MRI measures in a

series of ways. All sets of regional MRI measures from

each subject were considered in their raw form and also

normalized by the subject’s intracranial volume. Further,

the cortical thickness measures and the surface area mea-

sures from each subject were also normalized by the sub-

ject’s average global cortical thickness and the subject’s

total surface area respectively.

Statistical Analysis

MRI measures were analyzed using OPLS (Bylesjo et al.

2007; Trygg and Wold 2002; Rantalainen et al. 2006;

Westman et al. 2011c, 2010; Wiklund et al. 2008), a

supervised multivariate data analysis method included in

the software package SIMCA (Umetrics AB, Umea,

Sweden). A very similar method, partial least squares to

latent structures (PLS) has previously been used in several

studies to analyze MR-data (Levine et al. 2008; McIntosh

and Lobaugh 2004; Oberg et al. 2008; Westman et al.

2009, 2007). OPLS and PLS give the same predictive

accuracy, but the advantage of OPLS is that the model

created to compare groups is rotated, which means that the

information related to class separation is found in the first

component of the model, the predictive component. The

other orthogonal components in the model, if any, relate to

variation in the data not connected to class separation.

Focusing the information related to class separation on the

first component makes data interpretation easier (Wiklund

et al. 2008). There are also many similarities between

linear support vector machine (SVM) and OPLS. Both

methods can handle datasets with more dimensions than

samples. Linear SVM weights illustrate the importance of

the variables for the classification in descending order in

the same way as the loadings plots do for OPLS. The

unique property of OPLS when compared to other linear

regression methods is its ability to separate the modeling of

Table 2 Variable included in OPLS analysis

Cortical measuresa Subcortical measuresb

Banks of superior temporal sulcus Third ventricle

Caudal anterior cingulate Fourth ventricle

Caudal middle frontal gyrus Inferior lateral ventricle

Cuneus cortex Lateral ventricle

Entorhinal cortex Cerebrospinal fluid (CSF)

Fusiform gyrus Accumbens

Inferior parietal cortex Amygdala

Inferior temporal gyrus Brainstem

Isthmus of cingulate cortex Caudate

Lateral occipital cortex Cerebellum cortex

Lateral orbitofronral cortex Cerebellum white matter

Lingual gyrus Corpus callosum anterior

Medial orbitalfrontal cortex Corpus callosum central

Middle temporal gyrus Corpus callosum midanterior

Parahippocampal gyrus Corpus callosum

midposterior

Paracentral sulcus Corpus callosum posterior

Frontal operculum Hippocampus

Orbital operculum Putamen

Triangular part of inferior frontal

gyrus

Pallidum

Pericalcarine cortex Thalamus proper

Postcentral gyrus Ventral diencephalon (DC)

Posterior cingulate cortex

Precentral gyrus

Precuneus cortex

Rostral anterior cingulate cortex

Rostral middle frontal gyrus

Superior frontal gyrus

Superior parietal gyrus

Superior temporal gyrus

Supramarginal gyrus

Frontal pole

Temporal pole

Transverse temporal cortex

Insular

259 variables in total included in OPLS analysis
a Cortical measures = 34 regions (cortical volumes, cortical thick-

ness, surface area, mean curvature, gaussian curvature, folding index

and curvature index)
b Subcortical measures = 21 regions (volumes)
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correlated variation from structured noise (uncorrelated

variation). The structured noise is defined as orthogonal

variation in Y. At the same time the model maximizes the

covariance between X and Y.

Pre-processing was performed using mean centring and

unit variance scaling. Mean centring improves the inter-

pretability of the data, by subtracting the variable average

from the data. By doing so the data set is repositioned

around the origin. Large variance variables are more likely

to be expressed in modeling than low variance variables.

Consequently, unit variance scaling was selected to scale

the data appropriately. This scaling method calculates the

standard deviation of each variable. The inverse standard

deviation is used as a scaling weight for each MR-measure.

The results from the OPLS analysis are visualized in a

scatter plot by plotting the predictive component, which

contains the information related to class separation. Com-

ponents are vectors, which are linear combinations of

partial vectors and are dominated by the input variables (x),

in this case the regional MRI output. Each point in the

scatter plot represents one individual subject.

Each model receives a Q2(Y) value that describes its

statistical significance for separating groups. Q2(Y) values

[0.05 are regarded as statistically significant (Umetrics

2008), where

Q2ðYÞ ¼ 1� PRESS/SSY ð1Þ

where PRESS (predictive residual sum of squar-

es) = R(yactual - ypredicted)
2 and SSY is the total variation of

the Y matrix after scaling and mean centring (Eriksson et al.

2006). Q2(Y) is the fraction of the total variation of the Ys

(expected class values) that can be predicted by a component

according to cross validation (CV). CV is a statistical method

for validating a predictive model which involves building a

number of parallel models. These models differ from each other

by leaving out a part of the data set each time. The data omitted

is then predicted by the respective model. In this study we used

seven fold CV, which means that 1/7th of the data is omitted for

each CV round. Data is omitted once and only once.

Variables can be plotted according to their importance

for the separation of groups. The plot shows the MRI

measures and their corresponding jack-knifed confidence

intervals. Jack-knifing is used to estimate the bias and

standard error. Measures with confidence intervals that

include zero have low reliability (Wiklund et al. 2008).

Covariance is plotted on the y-axis, where

Covðt;XiÞ ¼ tT Xi=ðN � 1Þ ð2Þ

where t is the transpose of the score vector t in the

OPLS model, i is the centered variable in the data matrix X

and N is the number of variables (Wiklund et al. 2008).

Fig. 1 Representations of ROIs included as candidate input variables

in the multivariate OPLS model. a Coronal view of a T1-weighted

MPRAGE image displaying the regional volumes. b Lateral and

medial views of the grey matter surface illustrating the 34 regional

cortical thickness measures

Brain Topogr (2013) 26:9–23 13
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A measure with high covariance is more likely to have an

impact on group separation than a variable with low

covariance. MRI measures below zero in the scatter plot

have lower values in AD subjects compared to CTL

subjects, while MRI measures above zero are higher in AD

subjects compared to CTL subjects in the model.

Altogether eight types of regional MRI measures were

used (cortical thickness, cortical volumes, subcortical

Table 3 Raw data (data not normalized)

QledoM 2 CUAyticificepSytivitisneSycaruccA)Y(
Cortical thickness (CT) 0.522 85.2 (81.4-88.3
Cortical volumes (CV) 0.467 81.8 (77.8-85.2) 84.0 (78.0-88.5) 80.0 (74.3-84.7) 0.909*
Subcortical volumes (SV) 0.459 82.5 (78.6-85
Mean curvature (MC) 0.195 69.9 (65.3-74.1) 63.6 (56.5-70.2) 72.0 (65.8-77.5) 0.759
Surface area (SA) 0.164 67.2 (62.6-71.6) 
Gausian curvature (GC) ns -   -   -   - 
Folding index (FI)* ns -   -   -   - 
Curvature index (CI) ns -   -   -   - 
Average 
Hierarchial model  

8(3.98)4.29-5.68(8.98306.0TC+VS
8(2.88)3.19-2.58(6.88206.0VC+VS
8(2.78)1.19-9.48(4.88785.0TC+VC
8(6.68)7.09-4.48(9.78675.0AS+TC

4.78865.0CM+TC (83.8-90.2) 85.0 (79.2-89.4) 89.3 (84.6-92.7) 0.940
8(7.88)4.98-8.28(4.68545.0CM+VC
8(2.88)5.88-7.18(4.58625.0AS+VC
7(6.58)7.88-0.28(7.58525.0AS+VS
7(9.28)6.78-7.08(5.48615.0CM+VS

Average 
Hierarchial model 
SV+CV+CT 0.626 90.5 (87.3-93.0) 89.8 

) 82.4 (76.3-87.2) 87.6 (82.6-91.3) 0.927**

.9) 82.4 (76.3-87.5) 82.7 (77.2-87.1) 0.898

69.0 (62.0-75.2) 65.8 (59.4-71.7) 0.740

77.3 76.3 77.6 0.847

4.1-93.0) 90.2 (85.6-93.5) 0.951
2.8-92.1) 88.9 (84.1-92.4) 0.950
1.6-91.2) 89.3 (84.6-92.7) 0.949
1.0-90.8) 88.9 (84.1-92.4) 0.948*

2.2-91.7) 85.3 (80.1-89.4) 0.941*
2.8-92.1) 83.1 (77.7-87.4) 0.933*
9.8-89.9) 85.8 (80.6-89.7) 0.936
6.8-87.6) 85.8 (80.6-89.7) 0.934*

87.1 86.9 87.4 0.943

(84.6-93.4) 91.1 (86.7-94.2) 0.958

Q2(Y) = predictive ability of model and AUC = area under the curve. Confidence interval within parentheses. Thick line separating models

(within the table content) means that the block of models are significantly different in AUC compared to the other models in that category of

normalization method and number of input measures

* Significant difference in AUC between raw data versus normalized with intra cranial volume. ** Significant difference in AUC between raw

data and normalized with intra cranial volume and raw data versus normalized with mean cortical thickness. P-values \0.05 considered

significant after Bonferroni correction

Table 4 Data normalized by intra cranial volume

Model Q2(Y) CUAyticificepSytivitisneSycaruccA
Cortical volume (CV) 0.495 83.5 (79.6-86.8
Cortical thickness (CT) 0.491 83.3 (79.4-86.6) 80.8 (74.5-85.8) 85.3 (80.1-89.4) 0.917*
Subcortical volume (SV) 0.453 82.5 (78.6-85
Mean curvature (MC) 0.210 69.4 (64.8-73.7) 64.2 (57.1-70.7) 73.8 (67.7-79.1) 0.773
Surface area (SA) 0.178 66.5 (61.8-70.9) 69.5 (62.6-75.7) 64.0 (57.5-70.0) 0.751

----sn)CG(erutavrucnaisuaG
----sn)IF(xednignidloF
----sn)IC(xednierutavruC

Average 0.8518.772.670.77
Hierarchial model 

8.88)4.29-5.68(8.98106.0VC+VS
7.78)1.19-9.48(4.8895.0TC+VS
2.78)9.09-6.48(1.88285.0TC+VC
2.88)2.09-8.38(4.78975.0CM+VC

4.68355.0AS+VC (82.8-89.4) 87.2 (81.6-91.2) 85.8 (80.6-89.7) 0.953*
0.48)0.98-2.28(9.58255.0CM+TC
6.68)7.88-0.28(7.58545.0AS+TC
4.28)4.78-4.08(2.48415.0AS+VS

0.48115.0CM+VS (80.1-87.2) 81.3 (75.1-86.2) 86.2 (81.1-90.1) 0.925*
Average 0.9473.789.587.68
Hierarchial model 

2.88)4.29-5.68(8.9826.0TC+VC+VS

) 85.0 (79.2-89.4) 82.2 (76.7-86.7) 0.920*

.9) 81.3 (75.1-86.2) 83.6 (78.2-87.8) 0.896

(83.4-92.5) 90.7 (86.2-93.8) 0.960
(82.2-91.7) 88.9 (84.1-92.4) 0.950
(81.6-91.2) 88.9 (84.1-92.4) 0.952
(82.8-92.1) 86.7 (81.6-90.5) 0.954*

(78.0-88.5) 87.6 (82.6-91.3) 0.945
(81.0-90.8) 84.9 (79.6-89.0) 0.938*
(76.3-87.5) 85.8 (80.6-89.7) 0.942

(82.8-92.1) 91.1 (86.7-94.2) 0.953

Q2(Y) = predictive ability of model and AUC = area under the curve. Confidence interval within parentheses. Thick line separating models

(within the table content) means that the block of models are significantly different in AUC compared to the other models in that category of

normalization method and number of input measures

* Significant difference in AUC between raw data versus normalized with intra cranial volume. P-values \0.05 considered significant after

Bonferroni correction
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volumes surface area, mean curvature, gaussian curvature,

folding index and curvature index), resulting in a total of 259

variables to be used for OPLS analysis (Table 2). A series of

OPLS models were created for comparing the CTL versus

AD groups. For each of the eight types of measures, both raw

measures and measures normalized by intracranial volume

(ICV) were used in these models. In addition cortical

thickness measures were also normalised by mean cortical

thickness and surface area measures by total surface area.

Subsequently hierarchical models consisting of combina-

tions of two or three sets of regional measures were also

created (for example raw cortical thickness measures and

raw subcortical volumes, or cortical thickness measures

normalised by intracranial volume and subcortical volumes

normalised by intracranial volume). Feature selection was

not used other than excluding measures which resulted in

non-significant models. Excluding specific regions from the

models might make the models less representative and

structural features measured from a limited set of pre-defined

regions might not be able to reflect the pattern of structural

abnormalities in their entirety (Zhang et al. 2011). Further,

Cuignet et al. (2011) showed that feature selection does not

improve the classification but it does increase the computa-

tional time. Another recent paper investigated the effect of

feature selection (Chu et al. 2012) and they concluded that

feature selection improves the results particularly for small

cohorts but it does not seem to have a great affect on larger

samples. We have a much larger sample than the largest

sample used in this latter study.

The MCI subjects were also assessed against the best

CTL versus AD models to investigate how well the model

could predict conversion at 18 month follow-up from

baseline. Sensitivity, specificity, accuracy and area under

the receiver operating characteristic curve (AUC) of the

different models were calculated from the cross-validated

prediction values of the OPLS models. Areas under the

receiver operating characteristic curve were compared by

using the method of Hanley and McNeil (1983; McEvoy

et al. 2011), p-values \0.05 after correcting for multiple

comparisons using Bonferroni correction were considered

statistically significant.

The two-way Student t test with Bonferroni correction

(p-values [ 0.05 considered significant) was used for uni-

variate analysis to investigate the effect of normalization of

single regional measures (Tables 6; 7).

Results

OPLS models were created using CTL versus AD data for

all eight types of regional MRI measures (cortical thick-

ness, cortical volume, subcortical volume, surface area,

mean curvature, gaussian curvature, folding index and

curvature index) for both raw data and normalized data.

Hierarchical models were also created using up to three

types of different regional MRI measures. No feature

selection was performed for any of the eight different types

of measures, meaning all data was included.

Modeling and quality parameters are only shown for the

statistically significant single measure models and the most

robust [highest Q2(Y)] hierarchical models (Table 3: raw

data, Table 4: ICV normalized data, Table 5: data normal-

ized by total surface area, average cortical thickness and

mixed models including both normalized and raw data).

Figure 2 shows the variables of importance for the three

most robust single measure models [subcortical volumes

(ICV normalized), cortical volumes (ICV normalized) and

cortical thickness measures (raw data)]. Variables of

greatest importance for the separation between groups were

as expected the medial temporal lobe structures such as

hippocampus, amygdala and entorhinal cortex. To illustrate

the effect of normalization approaches on single measures

univariate analysis was performed for subcortical volumes

(Table 6), cortical volumes and cortical thickness measures

Table 5 Other normalization models

Model Q2(Y) Accuracy Sensitivity Specificity AUC

CT (normalized with average CT) 0.476 83.7 (80.0-87.0) 83.0 (76.8-87.6) 84.8 (79.6-88.9) 0.912**

SA (normalized with total SA) 0.169 69.2 (64.6-73.4) 71.1 (64.3-77.4) 67.6 (61.2-73.3) 0.744

Hierarchial model

SV ? CT* 0.603 89.3 (86.0-92.0) 87.2 (81.6-91.2) 91.1 (86.7-94.2) 0.951

CV ? CT* 0.592 88.4 (84.9-91.1) 86.6 (81.0-90.8) 89.8 (85.1-93.1) 0.951

Hierarchial model

SV ? CV ? CT* 0.626 91.5 (88.4-93.8) 89.8 (86.5-92.4) 92.9 (88.8-95.6) 0.960

Q2(Y) = predictive ability of model, CV cortical volume, SV subcortical volume, CT cortical thickness, SA surface area and AUC area under the

curve. Confidence interval within parentheses. * Mixed model = SV and CV normalized by ICV with raw CT data. ** Significant difference in

AUC between raw data and normalized with mean cortical thickness. P-values \0.05 considered significant after Bonferroni correction
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(Table 7). As can be observed in Tables 6 and 7, normal-

izing volumes with ICV and raw cortical thickness mea-

sures gave the best results.

AD Classification and MCI Conversion

The results from the different models used for AD classifi-

cation can be observed in Tables 3, 4, 5. The AUC values for

the different models were compared using the method of

Hanley and McNeil and p-values \0.05 after Bonferroni

correction for multiple comparisons were considered sta-

tistically significant. Only five out of the eight single mea-

sure models gave significant results for both raw and

normalized data. Gaussian curvature, folding index and

curvature index were therefore excluded from further anal-

ysis. Out of the five remaining measures the best results were

obtained from the cortical thickness, cortical volume and

subcortical volume measures (these measures were signifi-

cantly different from surface area and mean curvature for

both raw data and data normalized to ICV). Using raw data
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Fig. 2 Variables of importance

for the separation between CTL

versus AD. a subcortical

volumes (normalized by intra

cranial volume) b cortical gray
matter volumes (normalized by

intra cranial volume) c cortical

thickness (raw data). Measures

above zero have a larger value

in AD compared to controls and

measures below zero have a

lower value in AD compared to

controls. A measure with a high

covariance is more likely to

have an impact on group

separation than a measure with a

low covariance. Measures with

jack knifed confidence intervals

that include zero have low

reliability
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the best discrimination was obtained for cortical thickness

measures with an accuracy of 85.2 % (significantly different

from cortical and subcortical volumes) and for data nor-

malized by ICV the best discrimination was obtained from

the cortical volumes with an accuracy of 83.5 % (signifi-

cantly different from cortical thickness and subcortical

volumes). Looking at the normalization approaches for the

single measures, a significantly better result was obtained for

the cortical thickness measures when the data was not nor-

malized, compared to normalization with ICV and mean

cortical thickness (85.2 % compared to 83.5 and 83.7 %

respectively). For cortical volumes it was significantly better

to normalize with ICV than to use raw data (83.5 % com-

pared to 81.8 %). For the other measures normalization did

not have an effect. Figure 3 shows the scatter plots for the top

three single measures (raw data cortical thickness and ICV

normalized cortical and subcortical volumes) illustrating the

separation between the AD and CTL groups.

For the hierarchical models containing a combination of two

different measures the best models were the combination of

subcortical volumes with either cortical thickness or cortical

volumes for both raw data and ICV normalization (Raw data:

subcortical volumes ? cortical thickness = 89.8 %, subcor-

tical volumes ? cortical volumes = 88.6 %. ICV normalized

data: subcortical volumes ? cortical volumes = 89.8 %,

subcortical volumes ? cortical thickness = 88.4 %). There

seemed to be no effect of normalization approaches for the

most accurate and robust models combining two different

measures. No effect of normalization approach was observed

either for the models containing three different measures.

Combining three different measures did not significantly

affect the prediction accuracy compared to using two dif-

ferent measures. Only the three best models are shown

using the combination of cortical thickness, cortical vol-

ume and subcortical volumes. However, the best overall

prediction accuracy was obtained using this combination

with raw cortical thickness data and volumes normalized to

ICV (91.5 %).

Finally the best AD versus CTL models containing the

measures cortical thickness, cortical volumes and subcor-

tical volumes were used to predict conversion at 18 month

follow-up. Out of 287 MCI subjects 87 had converted to

AD at follow up. Similar results were observed for the MCI

predictions as for the models discriminating between AD

patients and cognitively normal subjects (Table 8). The

best results were obtained with a hierarchical model of two

sets of measures when subcortical volumes were combined

with either cortical volumes or cortical thickness. Com-

bining the three measures did not improve the predictions

and normalization approach did not seem to significantly

affect the results either. The best results were obtained

from the two models combining cortical thickness with

subcortical volumes (both ICV normalized data and mixed

data where the volumes are normalized to ICV and the raw

cortical thickness data was used) with 77 % of the MCIc

subjects correctly classified.

Discussion

The Freesurfer pipeline has been utilized in a number of

studies for AD classification and predicting MCI conver-

sion (Cui et al. 2011; Cuingnet et al. 2011; McEvoy et al.

2009, 2011; Westman et al. 2011a, b), but the complete

range of measures which can be obtained have not yet been

fully explored.

Normalization

The way in which different regional measures such as

volumes and cortical thickness should be normalized is

very important. Previous studies (Barnes et al. 2010; Cui

et al. 2011; Farias et al. 2011; Fjell et al. 2009; Walhovd

Table 6 Univariate analysis of subcortical volumes using different

normalization approaches for AD versus CTL

Subcortical measures Subcortical volumes

Normalization Raw ICV

Third ventricle ns p < 0.01

Fourth ventricle ns ns

Inferior lateral ventricle p \ 0.00001 p \ 0.00001

Lateral ventricle p \ 0.00001 p \ 0.00001

Cerebrospinal fluid (CSF) P \ 0.001 p \ 0.00001

Accumbens p \ 0.00001 p \ 0.00001

Amygdala p \ 0.00001 p \ 0.00001

Brainstem ns p < 0.00001

Caudate ns ns

Cerebellum cortex ns ns

Cerebellum white matter ns ns

Corpus callosum anterior ns ns

Corpus callosum central p \ 0.001 p \ 0.001

Corpus callosum midanterior p \ 0.01 p < 0.001

Corpus callosum midposterior p \ 0.001 p < 0.00001

Corpus callosum posterior ns p < 0.01

Hippocampus p \ 0.00001 p \ 0.00001

Putamen ns ns

Pallidum ns ns

Thalamus proper ns ns

Ventral diencephalon (DC) p \ 0.001 p < 0.00001

Bold values illustrate that there are differences in normalization

method

AD = Alzheimer’s disease, CTL = healthy control, ICV = intra

cranial volume and raw = not normalized. Two-way Student t test

with Bonferroni correction is used for univariate analysis. P-val-

ues \0.05 considered significant after Bonferroni correction
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et al. 2011; Westman et al. 2011b) have utilized different

approaches which can make results difficult to compare.

The results from the present study indicate that cortical

thickness measures should not be normalized, while vol-

umes should probably be normalized to ICV. Normalizing

cortical volumes improved the classification accuracy

while normalizing subcortical volumes did not show any

statistically significant improvement using the single

measure OPLS multivariate models. Further, looking at the

single regions (Tables 6, 7), it seems that normalizing the

volumes results in the largest differences while using the

raw data for cortical thickness yields the best results. When

combining the different measures in multivariate models

the normalization effect disappears. A potential explana-

tion for this could be that the use of multiple regional

measures provides enough anatomical information about

the brain atrophy pattern such that multivariate models are

robust enough to handle the variation caused by different

normalization approaches. In a recent paper, the consis-

tency of volumetric measures derived by FreeSurfer was

Table 7 Univariate analysis of cortical thickness and volumes using different normalization approaches for AD versus CTL

Cortical measures Cortical thickness Cortical volume

Normalization Raw ICV Mean CT Raw ICV

Banks of superior temporal sulcus p \ 0.00001 p \ 0.00001 p \ 0.00001 p \ 0.00001 p \ 0.00001

Caudal anterior cingulate ns ns p \ 0.00001 Ns ns

Caudal middle frontal gyrus p < 0.00001 p \ 0.001 ns Ns ns

Cuneus cortex ns ns p \ 0.00001 Ns ns

Entorhinal cortex p \ 0.00001 p \ 0.00001 p \ 0.00001 p \ 0.00001 p \ 0.00001

Fusiform gyrus p \ 0.00001 p \ 0.00001 p \ 0.00001 p \ 0.00001 p \ 0.00001

Inferior parietal cortex p \ 0.00001 p \ 0.00001 p \ 0.00001 p \ 0.00001 p \ 0.00001

Inferior temporal gyrus p \ 0.00001 p \ 0.00001 p \ 0.00001 p \ 0.00001 p \ 0.00001

Isthmus of cingulate cortex p < 0.00001 p \ 0.001 ns p \ 0.001 p < 0.00001

Lateral occipital cortex p < 0.00001 p \ 0.05 ns Ns p < 0.001

Lateral orbitofronral cortex p < 0.00001 ns ns Ns p < 0.05

Lingual gyrus p < 0.00001 ns p \ 0.01 p \ 0.05 p < 0.01

Medial orbitalfrontal cortex p < 0.00001 p \ 0.01 Ns p \ 0.01 p < 0.00001

Middle temporal gyrus p \ 0.00001 p \ 0.00001 p \ 0.00001 p \ 0.00001 p \ 0.00001

Parahippocampal gyrus p \ 0.00001 p \ 0.00001 p \ 0.00001 p \ 0.00001 p \ 0.00001

Paracentral sulcus ns ns p \ 0.00001 Ns ns

Frontal operculum p \ 0.00001 ns p \ 0.00001 Ns ns

Orbital operculum p < 0.00001 ns ns p \ 0.05 p < 0.01

Triangular part of inferior frontal gyrus p < 0.00001 ns p \ 0.01 p \ 0.01 p < 0.001

Pericalcarine cortex ns ns p \ 0.00001

Postcentral gyrus p < 0.01 ns p \ 0.00001 p < 0.01

Posterior cingulate cortex p < 0.001 ns p \ 0.01 p \ 0.01 p < 0.00001

Precentral gyrus p < 0.001 ns

Precuneus cortex p < 0.00001 p \ 0.00001 p \ 0.00001 p \ 0.00001

Rostral anterior cingulate cortex ns ns p \ 0.01 Ns ns

Rostral middle frontal gyrus p < 0.00001 p \ 0.001 ns p \ 0.001 p < 0.00001

Superior frontal gyrus p < 0.00001 p \ 0.01 ns p \ 0.01 p < 0.00001

Superior parietal gyrus p < 0.00001 p \ 0.01 ns p \ 0.01 p < 0.00001

Superior temporal gyrus p < 0.00001 p \ 0.00001 ns p \ 0.00001 p \ 0.00001

Supramarginal gyrus p < 0.00001 p \ 0.00001 ns p \ 0.00001 p \ 0.00001

Frontal pole p < 0.001 ns ns p \ 0.001 p \ 0.001

Temporal pole p < 0.00001 p \ 0.00001 ns p \ 0.00001 p \ 0.00001

Transverse temporal cortex ns ns ns Ns p < 0.01

Insular p < 0.00001 ns ns Ns p < 0.0001

Bold values illustrate that there are differences in normalization method

AD = Alzheimer’s disease, CTL = healthy control, ICV = intra cranial volume, Raw = not normalized and mean CT = normalized by mean

cortical thickness. Two-way Student t test with Bonferroni correction is used for univariate analysis
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investigated in five different cohorts (a total of 883 sub-

jects) (Walhovd et al. 2011). This study normalized

regional volume measurements by ICV as we propose here.

They concluded that ICV normalization is the most com-

monly used normalization approach in the literature.

However, it has also been stated that normalizing to ICV is

unlikely to be adequate due to the non-linear relationship

between volumes and ICV which was found in a sample of

78 healthy controls (Barnes et al. 2010). Another recent

study also stated that normalizing volumes to ICV is

inadequate due to the fact that the maximal brain size

seems to be an important predictor of cognition in old age,

independent of brain pathology (Farias et al. 2011). By

normalizing to ICV, the authors claim that investigators

may overlook the effect of ICV itself. Especially in

longitudinal studies, ICV may be an important variable in

itself for quantifying the effect of brain reserve (Farias

et al. 2011). Reviewing the literature regarding normalizing

cortical thickness, there seems to be a common agreement

that these measures should not be normalized (Fjell et al.

2009). This is also confirmed in the present study, where

normalized cortical thickness measures gave significantly

lower prediction accuracies regardless of normalization

approach (mean thickness or ICV).

Previous studies have drawn different conclusions on

the best normalization approach to adopt for regional MRI

measures. However, we feel fairly confident to say from

the results of the present study and results from previous

studies that cortical thickness should not be normalized.

Normalizing volumes seems to be a more complicated

-6

-4

-2

0

2

4

6

-5 -4 -3 -2 -1 0 1 2 3 4 5 6

O
rt

ho
go

na
l c

om
po

ne
nt

AD
CTL

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

O
rt

ho
go

na
l c

om
po

ne
nt

-6

-4

-2

0

2

4

6

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

O
rt

ho
go

na
l c

om
po

ne
nt

Predictive component

A

B

C

Fig. 3 Scatter plots illustrating

the separation between CTL

versus AD. a subcortical

volumes (normalized by intra

cranial volume) b cortical gray

matter volumes (normalized by

intra cranial volume) c cortical

thickness (raw data). The scatter
plots visualise group separation

and the predictability of three

different AD versus CTL

models. Each black circle
represents an AD subject and

each gray square a control

subject. Control subjects to the

right of zero and AD subjects to

the left of zero are falsely

predicted
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issue however. We believe that considering single regions,

the best approach is to normalize to ICV. Even though the

relationship between ICV and volumes may not be linear

and the effect of ICV itself may be removed if data is

normalized, we still believe this may be the best approach

to take. This is due to the fact that changes in neurode-

generative disorders are relatively small and could be

overlooked if data is not normalized. When we consider

multivariate models containing multiple brain regions the

normalization approach does not seem to be that important.

This need to be further validated in larger studies.

AD Classification and MCI Conversion

Previous studies have utilized different types of regional

MRI measures for AD classification and to predict MCI

conversion (Cui et al. 2011; Cuingnet et al. 2011; McEvoy

et al. 2009, 2011; Westman et al. 2011a, b). Whole brain

volume, regional volumes and cortical thickness measures

(volumes normalized to ICV and raw cortical thickness

data) were included in a recent study (McEvoy et al. 2011).

This study obtained a prediction accuracy of 90.4 %

between AD and CTL using a smaller sample from the

same cohort as in this study (ADNI). This is very similar to

the best accuracies obtain in this study ranging between

89.3 and 91.5 %. Data from the ADNI cohort was also

utilized in another study, which included cortical thickness

measures and regional cortical and subcortical volumes

(data not normalized), to train a SVM classifier using AD

and CTL data (Cui et al. 2011). The MCI subjects were

then used as a test set (in the same way as in the present

study) to predict future conversion at baseline. Using the

measures mentioned above 57.1 % of the MCIc and

65.5 % of MCIs were correctly classified, compared to 77

and 65.0 % respectively in the present study.

Other recent studies which did not use Freesurfer as

input for multivariate analysis have also found results in

line with ours. SVM has been successfully utilized with

voxel based input with accuracies up to 90.8 % (Chu et al.

2012; Liu et al. 2012). Our results are also in line with

those of Zhang et al. (2011) who found a classification

accuracy of 93.2 % when combining ROI based MRI

measures with FDG-PET and CSF.

Conclusion

Automated MRI image analysis pipelines can be used as

input for multivariate data analysis and machine learning

techniques, but there is also the option of using raw images

as the input to similar multivariate or machine learning

approaches. One of the major advantages of automated

analysis pipelines is their use of a number of predefined

regions which are easy to interpret and have a defined

biological meaning. These have greater face validity as a

biomarker of disease than a complex pattern of individual

voxels across the brain (McEvoy et al. 2011). This study

demonstrates that combining raw cortical thickness mea-

sures with subcortical volumes normalized by intracranial

volume gives the best prediction accuracy for separating

AD subjects from cognitively normal subjects. Adding

further measures did not significantly improve the classi-

fication accuracy, most likely because these additional

measures are also derived from the same regions as the

cortical thickness measures and provide similar informa-

tion. Further, normalization approach does not seem to

have such a great effect as we initially hypothesized. We

do however believe that volumes should be normalized by

ICV and that raw cortical thickness data should be used,

especially when looking at single regions or measures. This

need to be further validated in alternative cohorts. Finally,

the combination of cortical thickness measures with sub-

cortical volumes shows potential for prospectively pre-

dicting future conversion to AD from baseline. We believe

this is a sensible approach using MRI patterns as a bio-

marker of disease. Combining this approach with other

biomarkers such as CSF markers (Westman et al. 2012)

Table 8 MCI predictions using the CTL versus AD models as

training data

Raw data Sensitivity

(%)

Specificity

(%)

Accuracy

(%)

AUC

SV ? CV 75.9 60.5 65.1 0.734

SV ? CT 74.7 62.5 66.2 0.746

CV ? CT 67.8 69.0 68.6 0.742

SV ? CV ? CT 75.9 64.0 67.6 0.753

Average 73.6 64.0 66.9 0.744

ICV normalized

SV ? CT 77.0 65.0 68.6 0.739

SV ? CV 75.9 60.5 65.1 0.729

CV ? CT 68.9 67.0 67.6 0.736

SV ? CV ? CT 73.5 64.0 66.9 0.743

Average 73.8 64.1 67.1 0.737

Mixed models*

SV ? CT 77.0 64.5 68.3 0.749

CV ? CT 70.1 67.0 67.9 0.743

SV ? CV ? CT 75.9 66.5 69.3 0.748

Average 74.3 66.0 68.5 0.747

CV cortical volume, SV subcortical volume, CT cortical thickness, AD
Alzheimer’s disease, CTL healthy control, MCI mild cognitive

impairment and ICV intra cranial volume. 287 MCI subjects are

predicted on to the different AD versus CTL models, 87 MCI con-

verters and 200 MCI stable. Sensitivity = MCI converters predicted

as AD and specificity = MCI stable predicted as CTL. * Mixed

model = SV and CV normalized by ICV and raw CT data

20 Brain Topogr (2013) 26:9–23
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and PET markers is likely to further improve AD classifi-

cation and MCI conversion accuracy. This will hopefully

lead to improved tools to aid AD diagnosis and allow

targeting of the right populations for clinical trials.
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